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Derivation of Stiffness Matrices for Modeling a Human
Cervical Spine
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Based on the published experimental data under static loading condition, stiffness matrices of
the cervical spine were developed. These matrices simulate well the static response of the cervical
spine as shown by the authors in an earlier work, while for a dynamic simulation these matrices
n,eed some modifications in order to achieve more accurate results. We present a method, in the
form of a constrained optimization problem, that facilitates the evaluation of the stiffness
matrices to be used in a dynamic simulation. The intervertebral disk and the ligaments are
ff~presented by an equivalent stiffness matrix whose elements are assumed to be constant over the
entire range of mobility. With a set of new stiffness matrices derived by the proposed method,
the dynamic simulation showed a good agreement with the observed motion data.
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1. Introduction

The significance of motion simulation models
as research tools in contributing to physiological
research on human cervical spine has been recog
nized by many investigators. The mechanical
characteristics of the passive components of the
cervical spine can be accurately quantified in
vitro by measuring the relation between loads
appied to cervical spine and its resultant displace
ment.

Several researches have reported on the load
displacements characteristics of functional spinal
units(FSU), which defined as two adjacent verte
brae and intervening soft tissues, usually under
static conditions.

Panjabi, et al.(l976) applied a load in one
direction to the upper thoracic vertebra of a FSU
that had the lower vertebra rigidly attached to the
base of a testing apparatus and then measured its
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resulting displacements. The displacement in the
load direction divided by the magnitude of the
load gives the main flexibility coefficient, while
the others displacements divided by that load give
the coupling flexibility coefficients for that
motion. Following the same procedure, they
derived three-dimensional flexibility properties of
the human thoracic spine. Deng and Gold
smith( 1987), using anatomical considerations,
modified these matrices and used them for the
dynamic analysis of the cervical spine. McEl
haney, et al.(l988) used a combined bending and
axial loading for evaluating the stiffness which
revealed the anisotropic and nonlinear behavior.
They also concluded that the bending stiffness of
the cervical spine was significantly influenced by
the direction of the bending moment, the types of
the imposed restraints, the magnitude of the defor
mation and the deformation history. Nightingale,
et al.(l99l) analysed the influence of the end
conditions on the cervical spine injury mecha
nisms and on the stiffness. They stated that,
within a given specimen, the imposition of diffe
rent end conditions to the cervical spine results in

large changes in the observed axial stiffness.
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2. Stiffness Calculation by an
Optimization Analysis

The estimated stiffness coefficients were calcu
lated by inverting the flexibility matrix and

minimizing the quadratic error between the dis
placements obtained from the stiffness relation

and the actual experimental data. The ranges of
motion were used as constraints.

The problem can be announced as

matrices using data from several sources. Due to
the coupling terms in stiffness matrix it is difficult·,

to combine data from different researchers and
then satisfy all the experimental results. The best

compromise is to use the main motions and its

range of motion for getting a 3-D flexibility
matrix that can be used for obtaining results close

to the experimental ones.
In our earlier research(1992), simulation results

under static loading condition showed a good
agreement with experimental data. Despite nume

rous studies of quasistatic response of the FSU at

low loads, relatively little is known about the
mechanics of the cervical spine at other rate of

loading, especially at dynamic loading. Moreover,

the diversity of the published experimental data,

the use of an stiffness matrix obtained under static
loading condition obligate us to make some

modification to the stiffness matrices for dynamic

modeling of the cervical spine.
The goal of this study is to present a method for

obtaining the optimal stiffness characteristics of

the cervical motion segments using experimental
data from different sources in order to make an
accurate dynamic simulation of the cervical spine.

The Transfer Matrix Method(TMM) in combina
tion with optimization method was employed to

calculate the stiffness matrices and the response of

the human head and cervical spine to direct head
impact.

Pintar, et al.(1990) worked with entire cervical

spine. They applied an axial loading to the cer
vical spine and measured the resulting deforma

tions in the entire cervical spine. This data gives

an idea about the total displacement of the cer
vical spine at each level. Myers, et al.(1989) gave

date for the passive torsional response of the

entire human cervical spine. The rotational stiff
ness was measured after a rotation of 66.8 degrees

from the neutral position. Panjabi, et al.(1988)

evaluated the three-dimensional movements of the
occipito-atlanto-axial joint complex, quantifying

the neutral zone(zone of displacements at a very
small load) and the elastic zone. Flexibility coeffi

cients for the occiput-C 1 and C l-C2 joints were

also derived.
The mechanical response of the FSU is both

nonlinear and time dependent, this implies that
the load-displacement relation changes for diffe

rent applied forces and rates of loading. This is
one of the reasons for the discrepancy in the

published results. Differences in experimental

technique may be responsible for some variations
in collected data.

Edwards, et al.(1987) calculated the stiffness of

lumbar FSU using the Least Square Method by

minimizing the quadratic error between the expe
rimentally applied loads and the estimated loads

based on the calculated stiffness. They used sym
metric matrices for getting a set of six equations

that solve for six distinct coefficients used to
describe the planar motion. This consideration do

not reflect a nonlinear, time dependent load
displacement relation. Laborde, et al.( 1981)

presented experimental non-symmetric matrices
reflecting a load-displacement relation with non
linear, time dependent characteristics. The mea
sured coupling coefficients showed the asymmetry
of the matrix. Moroney, et al.(1988) reported the
principal and coupled motions of cervical seg

ments and also did a statistical analysis. Panjabi,
et al.(1976), (1986), (1988) and Patwardhan, et al.
(1982) measured the flexibility matrix and then by

matrix inversion calculated the stiffness matrix.
Usually the investigators did not measure the
complete 3-D flexibility matrix; so, in simulating

a 3-D motion it is needed to assemble these

Min Fi=(8i- uY
subjected to

8li ::O:; Ui::O:; 8u

where Fi=objective functions

8i=experimental displacements

(I)

(2)
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u,=calculated displacements
i = number of coupling coefficients

for a specified motion

olt=lower limit of range of motion
02i=upper limit of range of motion

For solving the problem it is used a multicrite

rion optimization analysis in which the goal is to
minimize not a single objective function but se

verall functions simultaneously. The Monte Carlo
Method, in which a certain number of points are

pickled at random over the estimated range of all

the variables, is used as a function minimization.
Then the Pareto optimal solutions are evaluated

using the following concept:

A point x* E X is Pareto optimal if for every

x(vector of decision variables) E X( n -dimen

sional Euclidean space of variables) either

F,(x)=F,(x*)
i = I, .,. k objective functions

or there is at least one i such that

F,(x»F,(x*) i=I,'" k

This definition is based upon the intuitive

N

Exist ff>alloihltl
solutions"

Fig. 1 Flow chart of the optimization

conviction that the point x* is chosen as the
optimal if no criterion can be improved without

worsening at least another criterion.
The minimum of the function is determined by

inspection. From this set of solutions the min
optimal solution is chosen using the Min-Max

aproach. This optimum is described as follows.
Knowing the extremes of the objective functions
the desirable solution is the one which gives the

smallest value of the relative increments of all the
objective functions with respect to their extremes.

The difference between the flexibility coeffi
cients or stiffness coefficients published by several

authors is reduced by considering its standard
deviations. Depending on the statistical probabi

lity curve an evaluation criterion can be chosen.

For example, 68.3 per cent of all items fall within

one standard deviation on each side of mean. This
criterion is considered in imposing the optimiza
tion constraints. The mean displacements are

considered for evaluating the objectives functions.
In Figure I, an algorithm for getting the opti

mal flexibility matrix is described

3. The Transfer Matrix Method

Consider the general element of Fig. 2. The

force vector P, and displacement

vector D are expressed by

P i - 1=[51' 52' 53' 54' 55, 56)T (3)
P,=[57' 58' 59' 5 10, 5 11, 5 1Z)T (4)

D'-l=[Uh Uz, U3, U4, Us, U6)T (5)

D,=[U7' U8, U9, UIO' U11, U12)T (6)

Physiologically speaking, the negative force

vector is formed by compression( - 57), posterior

shear ( - 58), right lateral shear( -- 59), right axial
rotation( - 5 10), left lateral bending( - 511) and

extension( - 512)'
The state vector of bending, torsion and axial

components in the vertebral mass center i-I of
an arbitrary element k, that is, kth FSU of the
discrete simulation is given by

[Q]k=[UI( i-I), U2( i-I), U3( i-I),
U4( i-I), us( i-I), U6( i-I),
5 j ( i-I), 5 2( i-I), 5 3( i-I),
54( i-I), 5s( i-I), S6( i-I), Ih

(7)
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x relation between the state vectors at the two ends
of the model, that is, vertebra TI and head.

8g. Ug

(12)

(II)

where

[CBK] = [CKMBKM CKls
[BKMBK]n-2[ CK]n-2, ... [BKh·

After incorporating the boundary conditions,
Eq. (II) will give a set of simultaneous equations.
The number of these equations is as same as that
of the unknown state variables in [Q]I> then these
variables can be found by solving these equations.

Once the initial state vector [Qh is known in
vertebra TI the determination of the state vectors
in each vertebral mass center are obtained by
successive multiplication of transfer matrices and
nodal matrices; this operation is expressed by

or

[Q]2=[CKMBKMQ]1
[Qh=[CKh[BKMQh

U:,
Distraction direction:

Anterior shear direction:

Left &hear direction: Z axis

01-1 center of .as of the lower vertebra

01 center of ..s of the upper vertebra

y
- __82. U2

Fig. 2 Coordinate system

8S. Us

The force-deformation relation for the element
k is defined by

[ Di-I] = CK[Di] (10)
Pi-I k+1 Pi k

where BK is called the Transfer Matrix of the
analysed element.

For the (k + I)th FSU, we have

(13)

(14)

(15)

Time response problems can be solved with a
direct time integration scheme.

For time equal t + (Mt, we have

where the effective stiffness matrix is given by

K(t) = K(t) +AoM+Al C

The modified load pet) is given by

P'+8~' =P, + e(p'+8~' - P,)
+ M(AoU, +A 2 U,+2U,)
+ C(A I U,+2U,+ AgU,)

At time t +ilt we get

U,+~,=A4(Ut+8~'- U,)
+AsU,+AsU, (16)

U'H'= U, +AiU'H' + U,) (17)
U'H'= U,+iltU,+AsCUt+~,+2U,)(18)

Where M is the lumped mass; C the damping

coefficient, e, Ao, AI> A 2, A g, A 4, As, A 6, A 7, As
are integration parameters from the Wilson
method of direct time integration. Using Eqs. (14)
and (15) in Eq. (13) and identifying Eq. (13) as
Eq. (8), we will be working in the general algor-

(8)

(9)

C-1][Di_l]
AC-I 5 i - 1 k

[
Di] [ - C-1D
Pi k- B- AC-1D

=BK[Di-l]
5 i - 1 k

[ Pi] [A B][ Di ]
Pi-I k= C D Di-1 k

Expanding Eq. (8) and solving for the state
vector at the vertebral mass center i as a function
of the state vector at the vertebral mass center
- I of the analysed element we get

The Nodal Matrix CK, incorporates inertial
parameters, prescribed deformations, slopes,
moments, etc.

After continuous multiplication of the transfer
and nodal matrices BK, CK, we obtain the
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Table I illustrates the experimental data used
in the simulation. Table 2 includes the constraints

and the main motions used in the objective func-

Calculate the transfer matrix[BK]1 : use Eq. (9)

Repeat the same procedure for all the cervical

vertebrae for finding the transfer matrices that

will transfer the state vector through the complete

model. That is, [BKh, [BKh, [BK]4, ...
Incorporating the transfer matrices [BK)., the

nodal matrices [CK)., the inertial parameters and
boundary conditions into the algorithm of the

transfer matrix a complete simulation of the

dynamic behavior of the cervical spine is obtained
An example is given next.

Applied anterior shear load S(2) : 100 N.

Resulting displacements : ~, a;, 06

Displacements obtained from simulation:

ithm of the transfer matrix method and evaluate

U t +Odt with the value of Ut+Odt, the values of

Vt+dt, Ut+dt and U t +dt are evaluated for any
time step L1 t.

4. Evaluation Process

For computing the optimal stiffness coe

ffiecients first we obtained the experimental flexi

bility coefficients following the procedure de

scribed by Panjabi( 1976). Then, by using an

optimization criterion the optimal stiffness coeffi

cients can be obtained. The procedure are listed

as follows;

Applied load : Sj
Measure resulting displacements: Oi
Main motion : i= j

Coupled motion : i '*' j
Average displacements : a~

Range of motions : Oli' 021
Calculate flexibility coeff.

F
..= OoPt(i)
IJ Sj

01i< OoPt(i) < 021
control parameter :~

Calculate stiffness matrix :by inversion

of the flexibility matrix.

Min F(I)=(~- Ut)2

F(2) = (02 - U2)2

F(3)=(as - U6)2

subjected to :

011 < Ul < 021
012< U2< 022

016< U6< 026

(l9a)

(I9b)
(l9c)

(20a)

(20b)
(2Oc)

Table 1 Experimental flexibility data used in simulation

M

~uthor Load Main Range of Coupled Range of Coupled Range of
motion motion motion motion motion motion

Compression F II 1.22E-06 F 21 9.17E-07 Fr,1 4.78E-05
at 500 N 8.98E-07 7.08E-07 6.75E-07 5.32E-07 3.52E-05 2.77E-05

Shea, Posterior Shear F 22 1.03E-05 F I2 2.78E-07 Fr,2 4.86E-05et al.
1991 ) at 100 N 8.70E-06 7.52E-06 2.35E-07 2.03E-07 4.lOE-05 3.55E-05

Extension Fr,r, 2.ooE-02 FIr, 2.93E -05 F 2r, 3.77E-04
at 3.5 Nm 7.62E-03 4.68E-03 1.I2E-05 6.86E-06 1.44E-04 8.83E-05

Right Lateral F 3:< 3.57E-05 F 43 8.ooE-04 F 53 4.89E-04
oroney, Shear at 19.6 N 8.40E-06 4.42E-06 1.88E-04 9.9IE-05 1.I5E-04 6.05E-05
et al.
1988) Left Bending F 55 9.18E-02 F 35 5.37E-04 F 45 2.90E-02

at 1.8 Nm 2.57E--02 I.lOE-02 1.50E-04 6.43E-05 8.19E-03 3.50E-03

-1yers,
F 44 6.71E-03 F 34 8.08E-05 F'.4 3.45E-03

et al. Right AxialRotation 4.62E-03 3.52E-03 5.57E-05 4.24E-05 2.37E-03 1.81E-031989)

Units: miN, rad/Nm
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Table 2 Constraints values used in optimization problem.

Applied Load S2: 100 N

Mean Displacement 01 02 06

(m) OO232סס.0- -0.000850 -0.004200

Upper Constraint 021 022 026
(m) OO20סס.0- -0.000752 -0.003550

Lower Constraint alI 0,2 0,6
(m) OO28סס.0- -0.001030 -0.004860

Simulated Displacement u, U2 U6

(m) OO22סס.0- -0.000793 -0.00395

Table 3 Minimum of the objective functions

Function minimization F(l) F(2) F(3)

First minimization 1.1OE-12 3.69E-09 6.674E-08

Second minimization 7.34E-12 2.59E-09 I.377E-07

Third minimization 6.25E-12 5.18E-09 4.278E-08

Extreme of the objective 1.l0E-12 2.59E-09 4.278E-08

functions F(i)O

Table 4 Results of the optimization procedure

Function values Relative deviations

Optimal
F(l) F(2) F(3) LlF(l) LlF(2) LlF(3)

solutions

I 1.17E-12 3.14E-09 1.048E-07 5.9IE~02 2.15E-0l 1.45E+00

2 5.74E-12 3.13E-09 1.043E-07 4.20E+00 2.09E-OI 1.44E+00

3 4.26E-12 5.78E-09 4.97IE-08 2.85E+00 1.23E+00 1.61E-01

4 4.5IE-12 2.84E-09 3.946E-07 3.08E+00 9.7IE-02 8.22E+00

5 5.29E-12 3.3IE-09 5.l06E-08 3.79E+00 2.80E-OI 1.93E -01

6 5.85E-12 2.90E-09 1.614E-07 4.30E+00 1.20E-OI 2.77E+00

7 6.25E-12 5.18E-09 4.278E-07 4.66E+00 1.00E+00 O.ooE+oo

8 1.19E-12 3.28E-09 6.218E-08 8.15E-02 2.67E-01 4.53E-OI

9 1.l0E-12 3.69E-09 6.674E-08 O.ooE+oo 4.26E-01 5.60E-OI

10 7.34E-12 2.59E-09 1.376E-07 5.64E+00 O.ooE+oo 2.22E+00

II 2.49E-12 3.97E-09 6.090E-08 1.26E+00 5.35E-OI 4.23E-01

12 2.35E-12 3.05E-09 l.3ooE-07 1.13E+00 1.78E -01 2.04E+00

Final
1.19E-12 3.28E-09 6.218E-08 8.15E-02 2.67E-OI 4.53E-01

solution
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(21)

tions (a;-, 02, od.
The output of the function minimization is

given in Table 3.

A set of optimal solutions is calculated on the
base of the Pareto optimum. The min-max opti
mum compares relative deviations of each objec
tive function from the minima F( i)0 given in

Table 3. For the ith objective function of any set
of optimal solutions the relative deviation is
calculated by

AF( ')= IF(i)- F(i)°l
£.J 1 F( i)0

The relative deviations are given in Table 4.
The min-max solution chooses from each set

the maximum LlF, then makes a comparison
between all the maxima LlF from all the sets and
chooses the minimum LlF. The set for which
belongs the minimum LlF is the solution.

5. Results and Discussion

Using the coordinate system illustrated in Fig.
2, the stiffness matrix for the C2- C3, C3- C4,
C4-- C5 vertebrae is given by

K=

149.100
0.928
0.000
0.000
0.000

-0.924

3.127
13.910
0.000
0.000
0.000

-0.094

0.000
0.000

29.490
0.959
0.272
0.000

0.000
0.000
0.491
0.047

--0.008
0.000

0.000 --0.199
0.000 - 0.254
0.249 0.000

-0.016 0.000
0.009 0.000
0.000 0.024

(Unit: N, m, rad.)

In obtaining this matrix we used the data
measured by Moroney, et al.(l988) Shea, et al.
(1991) and Myers, et al.(l989). The values are
given in Table I; these values correspond to
loads of high magnitude, region where the stiff
m:ss matrices are relatively linear. Shea, et al.
suggested the modeling of the cervical spine as
three distinct mobile regions CI- C2, C2 - C5,
C 5- T I ; regions for which we have calculated
therespectivestiffnessmatrices( CI - C2 ; C2 - C3,

C3-C4, C4-C5;C5-C6, C6-C7, C7-T
I) together with the matrix for Head - C I. The
stiffness of the functional spinal units is not
constant over the range of physiological loads.
Panjabi used low loads while our matrices were
built using high applied loads that are close to the
strength limit as is the case in an automobile
ac:cident. In evaluating the motions, we gave the
same importance to the main and coupling
motions which are specified in the objective func
tions ; after 100 iterations we got a deviation of

5.45%, 7.18% and 6.33%, for -~, 02 and 06 respec
tively.

Usually in simulating the dynamic behavior of
the spine, the published stiffness values lead to an
unreasonable results. This is mainly due to the

use of experimental stiffness data assembled from
different researchers under conditions distinct to
the actual ones. Our new method will help to
estimate the stiffness matrix that could lead to
obtain realistic results. Once the unreasonable
variables are localized, we work with the stiffness
matrices for estimating new variable values; that
is, imposing new functions or constraints we will
create a new stiffness matrix, which should be
matched with the data on hand. Williams and
Belytschko(l983) followed a similar procedure in
the early stages of constructing their head-neck
model for impact studies, however they did not
used a systematic procedure. In order to show the
application of these concepts we present a
dynamic analysis that can be used for analyzing
the influence of the stiffness matrices in the
modeling of the human spine.

With the measurement of forces and displace
ments in the entire spine and individual interver
tebral segments, it is possible to obtain three
dimensional stiffness properties, including cou
pling effects that simulate accurately the mechani
cal response of the spine in each level. We will get
a set of functions for each level of the spine with
the respective constraints, and the minimization
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will be done for the entire spine simultaneously.
In case of dynamic simulation, impact force of

3850 N was applied to the center of graviti of the
head in the anterior-posterior direction( - 57).
The force profile is of triangular shape acting
during 5 ms with the highest magnitude at 2.5 ms.
Damping is not considered in this analysis. Same
physical and geometrical properties of the Deng
and Goldsmith( 1987) were used in dynamic ana
lysis. Figures 3, 4 and 5 shows the displacements,
velocities, and accelerations of the center of gra
vity of the head with respect to the first thoracic

vertebra( T I) respectively. Our results have a
good correlation, with a in-vitro experiments
performed by Huston(l975). The velocity and
acceleration of the model at the beginning of the
simulation have the same pattern with the experi
mental values, however the numerical results are
higher than the experimental ones. This discre
pancy is believed to be mainly due to the exis
tence of the so called neutral zone; in this region
large displacements take place for small applied

-12+-~~~~~~~~~~~~----j
o 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

lime{s)

I -- SIMULATION ~ EXPERIMENT(HOU81al.1975l/

Fig. 3 Displacement of head in Y direction

loads which usually is not reported in some cases
and combined with the elastic zone in others. For
more accurate results both zones should be distin
guished and considered in the modeling. Another
reason for these disagreements may be the no
consideration of the nonlinearity due to facet
joint contact.

The stiffness matrices for several spinal seg
ments that were used for the motion simulation of
the human cervical spine are listed as follows.

Stiffness matrix for Head - C I vertebra

240.9000 5.3840 OOסס.0 OOסס.0 OOסס.0 -0.2462
0.5136 22.9400 OOסס.0 OOסס.0 0.0000 -0.4395
OOסס.0 0.0000 2748.0000 48.7200 31.1000 OOסס.0

K=
0.0000 0.0000 0.0991 0.0035 -0.0016 OOסס.0

x 104

0.0000 OOסס.0 0.1054 -0.0029 0.0032 OOסס.0

-0.0175 -0.0018 OOסס.0 0.0000 0.0000 0.0005

Stiffness matrix for C 1- C2 vertebrae

269.4000 5.6860 OOסס.0 0.0000 OOסס.0 -0.3009
5.0500 39.5600 OOסס.0 0.0000 OOסס.0 -0.7099
0.0000 0.0000 80.0700 1.4760 0.9646 =OOKסס.0
OOסס.0 OOסס.0 0.0132 0.0005 -0.0002 0.0000

x 104

OOסס.0 0.0000 0.1553 -0.0045 0.0051 OOסס.0

-0.0331 -0.0038 0.0000 OOסס.0 OOסס.0 0.0009

Stiffness matrix for C5 - C6 ; C6 - C7 ; C7 - T I vertebrae

95.1300 1.8870 OOסס.0 OOסס.0 0.0000 -0.1858
12.0500 19.2500 OOסס.0 0.0000 OOסס.0 -0.7470
OOסס.0 OOסס.0 48.6100 0.9320 0.5840 =OOKסס.0
OOסס.0 OOסס.0 1.9050 0.0705 -0.0347 OOסס.0

x 104

OOסס.0 OOסס.0 0.6200 -0.0170 0.0169 OOסס.0

-0.6474 -0.0681 OOסס.0 OOסס.0 OOסס.0 0.0200

(Units: N. m. rad.)
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6. Conclusion

The stiffness matrices obtained from experimen
tal data using the Monte Carlo Method in combi
nation with Transfer Matrix Method simulates
accurately the cervical spine behavior under an
impact loading condition. For getting results
closer to the experimental ones the stiffness coeffi
cients can be changed under certain limits, which
are given by the range of motion and statistical
considerations. When it is applied to the cervical
spim: modeling, the Transfer Matrix Method in
combination with a direct time integration
scheme, proves to be a powerful method of analy
sis. The TMM uses matrices of relatively small
order and has short computational time, which
could allow the modeling of the complete human
spine: incorporating stiffness matrices for several
load levels.
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